LLM이 없는 정보를 만들어내는데, 할루시네이션? RAG 잘못 이해했나?

RAG_할루시네이션

주요 기사 요약 ICLR 2025에 발표된 최신 연구에 따르면, RAG를 도입한 시스템도 여전히 35-62%의 확률로 틀린 답변을 제공하고 있다. 더 충격적인 것은 RAG를 적용하면 오히려 LLM의 “모르겠습니다”라는 기권율이 감소한다는 사실이다. Claude 3.5 Sonnet은 RAG 없이 84.1%를 기권했지만, RAG 적용 후 52%로 떨어졌다. 구글 연구팀은 이 문제를 “충분한 맥락(Sufficient Context)”과 “선택적 생성(Selective Generation)” 개념으로 해결하려 하고 … Read more

청킹전략! 문서를 512토큰씩 자르니까 RAG 정확도가 40% 올라갔다

청킹전략_512토큰

주요 기사 요약 2026년 RAG 최적화 연구에서는 청킹 전략이 검색 정확도에 미치는 영향이 상당함이 확인되었다. 일반적으로 200~500 토큰(약 150~400 단어) 범위를 사용하지만, OpenAI의 text-embedding-ada-002는 256 또는 512 토큰 블록에서 최적 성능을 보인다. TableRAG의 경우 구조화된 데이터 처리로 10~20% 정확도 향상을, 금융 및 재고 관리 시스템은 30% 개선을 보고했다. 특히 청킹 전략을 잘못 선택하면 중요한 개념이 … Read more